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1. INTRODUCTION

A Lidstone series provides a two-point expansion of a given functionf(z)
in the form

fez) = j(1) .I1o(z) + flO) .110(1 - z) +r(1) .I11(z)

+rCO) Ail - z) + .." (1.1)

where .I1,,(z) is a polynomial of degree 2n + 1 defined by the generating
function

sinh zt
sinh t

L t2n/l r,(z).
n~O

(1.2)

Lidstone series have received much attention by H. Poritsky, I. J. Schoen
berg, D. V. Widder, R. P. Boas, Jr. and others. For relevant literature on
the subject, see Boas [1].

A function j(x), having derivatives of all orders on all interval [a, b},
with the additional properties (_1)n jI2nJ(x) :); 0 (a ~ x ~ b; n = 0, 1,...),
is said to be completely convex on that interval. Widder [5,6] studied the
relationship between functions having a Lidstone series representation and
the class of completely convex functions. He showed that a function j(x)
has an absolutely convergent Lidstone series representation if and only if it
can be written as the difference oftwo minimal completely convexfunctions [6].
Boas [1] pointed out the difficulty in applying Widder's necessary and suffi
cient condition to an arbitrary functionj(x). He then gave simple necessary
conditions and sufficient conditions for representation of functions by Lid
stone series.

Recently, Leeming and Sharma [3] have introduced an extension of the
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124 LEEMING

Lidstone series (called p-Lidstone or (p, L) series), and of completely convex
functions (called completely Wv-convex functions), which led to a generali
zation of Widder's result [3, Theorem IV].

It is the object of this paper to give a generalization of the results of Boas [1]
using the terminology and results given in (3].

In the remainder of Section 1 we give the notation and basic definitions
used throughout the paper. In Section 2, we state and prove two theorems
giving necessary conditions for representations of functions by (p, L) series.
Section 3 contains four theorems which give sufficient conditions for repre
sentation of functions by (p, L) series.

Set

00 t vn+i
N ·(t) = " --,---------:-:--c-

V,3 ~o (pn + j)!

00 (-l)n tpn+i
M ·(t) = " ~-'---:-~

1',3 n::o (pn + j) !
(1.3)

(j = 0, I, .,. , p - I; p = 2,3, ...).

We denote the positive zeros of M p • v- 1(t) by

A1 < A2 < ... < An < .... (1.4)

DEFINITION 1.1: The (formal) representation of a functionJ E Coo [0, I]

j(z) = f [j(1'n)(1) Cpn(Z) + f j<pn+il(O) Avn+iz)] (1.5)
n=O j=O

where {C1'n(z)}:~o and {Apn+lz)}:~o (j = 0, 1,...,p - 2) are defined by the
generating functions

~ tpn+iA .(z) = N '(7t) _ N1',;(t) NV ,'P-1(Zt) (1.7)
~ pn+3 V,} - N (t)
n~O p,v-1

(j = 0, 1, ... ,p - 2) and Np,;(t) is given by (1.3) is called the p-Lidstone
(or (p, L» series of fez).

DEFINITION 1.2. A real valued function J defined on [a, b] is said to be
completely Wv-convex if

(i) JE Coo[a, b]

(ii) (-1)'" f<Pk)(x) ?: 0

(iii) (-1)'" flPk+il(a) ?: °
(a :S:;; x :S:;; b; k = 0, 1,...)

(j = 1, 2, ...,p - 2; k = 0, 1,...).
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Remark. If we set p = 2 in (1.5) we have the Lidstone series expansion
(1.1). Further, setting p = 2 in Definition 1.2 we have the class of completely
convex functions.

2. SOME NECESSARY CONDITIONS FOR REPRESENTATION OF FUNCTIONS BY

(p, L) SERIES

We shall show that results similar to those of Boas for the Lidstone series
[1] hold for representation of a function by a (p, L) series. In particular
we prove,

THEOREM 2.1. If the (p, L) series offez) converges absolutely to fez) then

fez) = O(eIZ]Al)

where ;"1 is given by (1.4).

(lzl-+oo) (2.1)

THEOREM 2.2. No condition of the form

(I z 1 -> CX) (2.2)

where cp(r) -+ 0 as r -+ 00 and cp is independent offis necessaryfor the absolute
convergence of the (p, L) series to fez).

In order to prove Theorem 2.1 we require some preliminary results. Define

( _ 1) I K ( () = j(x - t)P-I - (1 - t)p-I xP-\
P . 1 X, ~ 1-(1 _ t)P-\ X1J-I

KI(x, t) is the Green's function for the differential system

(0 :;:;; t < x :;:;; 1)
(0 :;:;; x :;:;; t :;:;; 1)

(2.3)

j y(P)(x) = cp(x)
Iy(1) = 0; yeO) = )"(0) = ... = yLu-2)(O) = 0,

where 1>(x) is any function continuous on [0, 1) so that

y(x) = J: KI(x, t) cp(t) dt.

If we denote the iterates of KI(x, t) by

(2.4)

(2.5)

,.1

Kn(x, t) = J KI(x, u) Kn_I(u, t) du
o

(n = 2,3,...), (2.6)
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then we have
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LEMMA 2.1. Ifj(x) E C' [0, 1], then

n-I P-2 n-I

j(x) = L j< Pk)(1) Cp,,(x) + L L j(pNj)(O) Apk+;(x) + Rn(x,j), (2.7)
k~O j~O ,,~O

where

(j = 0, 1,...,p - 2)

are defined by (1.6) and (1. 7) and

.1

R,.(x,j) = j 0 Kn(x, t)j(P/lI(t) dt

with K,,(x, t) given by (2.3) and (2.6).

(2.8)

LEMMA 2.2. If j(x) is completely W,p-c01wex on [0, 1] then for any
xo(O :0( Xo :0( 1),

j(x) ~ j(xo) x p
- I

j(x) :0( j(xo)(1 - x P- I )

(0 :0( x :0( xo),

(xo :0( x :0( 1).

(2.9)

(2.10)

Note. Throughout the paper we use B to denote suitable constants (not
necessarily the same) which are independent of n and x unless otherwise
stated.

LEMMA 2.3. (a) For 0 :0( x :0( 1, n = 1,2,... ,

(n = 0, 1,...,p - 2).

(2.11)

(2.12)

(b) For any fixed xo(O < Xo < 1) there is a constant B such that

(n = 1,2,...), (2.13)

(j = 0, 1,...,p - 2; n = 1,2,...). (2.14)

The proofs of Lemmas 2.1-2.3 are given in [3].
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LEMMA 2.4. Iff(x) is completely Wp-convex on [0, 1] and

then

(-1)'" f(pnl(x) ~ Mp,,(xp- 1 - x P), (0 0::;; x 0::;; 1, J1 = 0, 1, ...). (2.15)

Proof Suppose the maximum M pn is attained at x = X o ' Then, by
Lemma 2.1, we have for 0 0::;; x 0::;; xo

(-I)" flpnJ(x) = (-1)11 I 2r pn+il (0) [{~ \); _ (~)' P-I]
j~O \ X o \ Xo

, X \ p~l+ (-1)n f(pnl(xo)/-"-l + R,,(x, X o ,j), (2.16)
\Xij ..

where

with KI(x, t) given by (2.3). Therefore, from Lemma 2.2

(2.17)

For the interval X o ~ x 0::;; 1, we expand f(x) using f(1), f(xo) and fUi(O)
(j = 1, 2, ... ,p - 2) to obtain

p-2

flx) = f(xo) Do(x) + f(l) D1(x) + I f(jl(O) EiC;r) + R*(x, xo,j) (2.18)
j~1

with

1 - x p - 1

Do(x) = 1 _ x p - 1 ;
o

D () (
1 - xl \(1 - -,

IX = 1-xg-1 ) -xP-~)

(2.19)

and, for X o 0::;; x 0::;; 1, Do(x) ~ 0, D1(x) ~ 0, Elx) ~ 0 (j = 1,2,... , p - 2).
Furthermore [3, Lemma 7.3], R*(x, Xu ,f) ~ 0, X o ~ x ~ 1; so we have

(
1 - x P- 1 •

(-1)11 f(pnl(x) ;;?; M pn 1 _ P-l);;?; M p,,(1 - XP-l) ;;?; Mp,,(x p- 1 - xP).
~ (2~O'••k I)

This proves the Lemma.
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LEMMA 2.5. Let Kn(x, t) be defined by (2.3) and (2.6). If

.1

gn(x) = J KnCx, t)(tV-1 - tV) dt
o

then there exists a positive constant B such that

(n = 1,2,...) (2.21)

(2.22)

Proof From (2.4)-(2.6), it follows easily that g,,(x) has the properties

g:t' )(x) = x P- 1 - x P

g~Pk)(l) = 0; g:;'k+iJ(O) = °
Therefore,

(2.23)
(j = 0, l, ...,p - 2; k = 0, 1,... , n - 1).

(p - I)! X pn+p-1 p! x vn+p

gnCx) = (pn + p _ I)! - (pn + p)! + Qpn-1(X), (2.24)

where Qpn-1(X) is a polynomial of degree pn - 1. Thus by Lemma 2.1

n+1 p-2
gn(x) = L [g~Pk)(l) Cpk(x) + L g~Pk+jl(O) Apk+/O)J. (2.25)

k~O j~O

By (2.23) and the properties of Cpk(x), Avk+ix) (j = 0, 1, ... ,p - 2;
k = 0, 1,...), (2.25) yields

n+1 V-2
g ,,(x) = L [g~V")(l) Cpk(x) + L g;,vk+iJ(O) Apk+/x)]. (2.26)

k~" j=O

Using (2.24) and (2.25), (2.26) reduces to

gnCx) = -p! (Ap,,+p(x) + Cvn+p(x)].

Therefore (-l)n gn(x) = (_1)n+1p ! [Apn+p(x) + Cpn+v(x)].
From (2.13) and (2.14) we have (2.22) which proves the lemma.

Proofof Theorem 2.1. From Lemma 2.1,

n-1 v-2
f(x) - L PVk)(l) Cpk(x) + L PVk+iJ(O) Apk+;(x)

k~O j=O

= rKn(x, t)f<vnl(t) dt,
o

(2.27)

(2.28)
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where Kn(x, t) is defined by (2.3) and (2.6). Since (-1)" Kn(x, t) ? 0
(0 :s;; x :s;; 1; 0 :s;; t :s;; 1, n = 1,2,...) [3, Lemma 4.2] and by Lemma 2.4

,.1J Kn(x, t)j<pn>(t) dt
o

.1

= J (-l)n Kn(x, t)(-l)"j< pn>(t)dt
o

1

? M pn J (-1)" Kn(x, t)(t P- 1 - t P) dt = M pn(-l)" g,,(x).
o

Setting x = xo(O < xo< 1) and applying Lemma 2.3 we have

(2.29)

From (2.7) we see that if the (p, L) series of f(x) converges to f(x)
for x = xoCO < Xo < 1), the left side of (2.29) approaches zero, hence
M pn :s;; EnAin where E" --+ 0 as n --+ 00. It follows easily from a result of
Hadamard (see, e.g., [2, p. 13]) that M pn+j :s;; En,\r+j (j = 0, 1, ...,p - 1).
Therefore f(kl(x) = 0(A1k) as k --+ 00, so if z is any complex number, we have

This proves the theorem.

THEOREM 2.2. No condition of the form

fez) = O{ep([ z J) e1W1} (i z [ --+ 00) (2.30)

where ep(r) --+ 0 as r --+ 00 and ep is independent offis necessary for the absolute
convergence of the (p, L) series to fez).

Proof Choose a sequence of positive numbers {cpn}:=o such that the
series L:~o Cpn/Ai" converges, where Al is given by (104).

Define

If we set

co

fez) = I (-1)1' CpnCpn(z).
n~O

C () 1 J" N P,P_l(zt) d
pn,1 Z = 27Ti tpn+lN rt) t,r p.p-I,

(2.31)

(2.32)
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(2.34)

(2.33)

where Np,p_tCt) is given by (1.3) and r is the circle I t I = H,'-r + A2). From
Cauchy's Residue Theorem it is easily shown that

C () ( ) (_I)n pM~P,P_1(ZA1)
pn,l Z - Clm Z = Apn+1M (A )

1 p,p-2 1

Since M p,P_1(ZT) is an entire function of exponential type I T I, and since
N p ,P_1(t) is uniformly bounded away from zero for I t I = teAl + A2), we
obtain the estimate

[ Cpn(z)[ ~ ( Al ~ A--;) A exp [~ (AI + A2)[ z I].
Therefore the series (2.31) is absolutely convergent for every z. Set

z = x + iy and w = e2rrijp. In order to complete the proof of Theorem 2.2,
we require a lower bound on I I( vwy) I, and so we prove

LEMMA 2.6. For n = 0,1,... and y ~ 0,

r n - n-1 yPk+P-1(A1)p(n-i-1l+2
- '\I we-I) Cpn(VWY) ~ pAp ~ (k + _ I)! ' (2.35)

J~O P P

where A p is a positive constant depending only on p.

ProofofLemma 2.6, Since we have [3, p. 15]

C () - ( l)n+1 ~ M p,P_1(XAk ) (236)
pn x - P - t1 M p,P_2(Ak) Arn+1 ' ,

where A,lk = 1,2,...) is given by (1.4). This representation of Cpn(x) is valid
in [0, 1].

Case I: p = 2. Then (2.36) reduces to the Fourier Series expansion of
C2n(x) and we have A 2 = 1, whereas Boas [1, p. 242] obtains the better
estimate! by summing a geometric series.

Case II: p > 2. Boas' technique does not work, since the function
M p ,P_1(t) is not periodic for p > 2. However, using the properties of the
function M p ,P_1(t) [4, p. 46] we have

C~;:+v}(o) = ° (v = 0, 1,... , p - 2)

C(Pj+P-1}(O) _ p(_I)n+H1 ~ 1
pn - 21 M p,P-2(Ak) A,,)p(n-i-1l+2

(2.37)

p(_1)n+i 00 (

= (A )p(n-i-1l+2 L -
1 k~l

p(-1)n+i A"',i
(A

1
)p(n-i-1l+2 •

(2.38)
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Now for p > 2, {(-1)'" M P.P-2(Ak)}~~1 is an increasing sequence of positive
numbers unbounded above [4], so for j = 0, 1, ... , n - 1, we have

> - 1 (11 [1 - ( ~I2 ),2] = A p > O.
kJP, p-2 1) 1\

From (2.38) and (2.39) we have

(_I)n+i C(pj+P--I)(O) > pA'P ( . - 0 1 ' - 1)
pn (A

I
)p(n-i+I )+2 ] - , ""j 10 • (2.40)

Since C~~:O+P-Il(X) = qp-l)(x) = (p - I)!, we use the Maclaurin series
to express Cj)nhlwy) in the form

(-1)'t'D (wy) = (-I)n pn~-I (v~y)i C(jl(O)
, pn L.·1 pn'

j=O J.

n (V~y)Pk+'P-I

= (_1)n 20 (pk + p _ I)! q~k+P-I)(O)

1 n (_I)7<:+n yP7.;+P-I
= - 0 F L ( k + _ r! C~~/,+P-Il(O).

v W 7.;=0 P P ).

Therefore, we have

_ _ n-I ,pk+p-I
- • Iw(-I)n C (0 I WlJ) :>- pA" y (\ )Pln-i,-Il+2 (2 41'\

v 'Pn V .J:?' p k':::O (pk + p _ I)! 1\1 •. -,

This completes the proof of Lemma 2.6.
Substituting (2.41) in (2.31), we have, for y ?: 0,

'"
- V~f(V~Y) = - V~ I (-1)" cpnC'Pn(V~Y)

n~O
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where
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00

qk = I Cpn(AI)-pn and qk ---+ 0 as k ---+ 00.
n=k+l

Given any number C > 0, when cy = p - 1 (modp) we have, using Stirling's
formula

(0 < () < 1)

Now if c is chosen so large that Allc < lie, then we have

Therefore, for any given function 1>(1') such that 1>(1') ---+ 0 as I' ---+ 00,

we may choose the sequence {c~Jn};:~o so that qCY will approach zero as slowly
as desired, so there is a function fez) defined by the (p, L) series (2.31)
not satisfying (2.30). This completes the proof of Theorem 2.2.

3. SOME SUFFICIENT CONDITIONS FOR REPRESENTATION OF FUNCTIONS BY

(p, L) SERIES

The results of this section generalize the results given by Boas [I] for the
Lidstone series. Here we obtain similar results for (p, L) series.

THEOREM 3.1. The (p, L) series off(z) converges to fez) if

fez) = 0([ z 1-112 e1zi"1) (I z 1---+ (0) (3.1)

where Al is given by (1.4).
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Before proving Theorem 3.1, we require
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LEMMA 3.1. Let KnCx, t) (n = 1,2,... ,) be defined by (2.2) and (2.5).

Then for 0 < x ~ 1

J
1 B0< (_l)n KnC'C, t)dt ~ ,\pn (3.2)
o 1

The proof of Lemma 3.1 is given [3, Lemma 6.4, p. 18].

Proof of Theorem 3.1. Ifj(z) satisfies (3.1) then

Ij(z)[ ~ 1](1 z [)[ Z 1-1/2 elzlAl

where 71(s) -+ 0 as s -+ 00. Furthermore, for 0 < t < 1 we have

(3.3)

j<pn+iJ(t) = (pn
2
+.j)! J ( f(Z~d~ '+1 (j = 0, 1, ...,p - 2), (3.4)
7T1 C i Z - t pnT)

where Cj is the circle I z I = s(j) > 1, and

sW = 1 + pn;\.: j ,

From (3.3) and (3.4) we have

(3.5)

( + j)' (j)

I flPn+j)(t)[ ~ pn . s. (max 1ft )')
" (s(}) - l)pn+H1 Izk:;slj) Z I

(pn +j)! 71(S(j» e",sli) (3.6)
< (s(j) - 1)pn+i+1 (S(j»1(2 '

From (3.5) and Stirling's formula, we have

"' B(pn +1')p>1+i e-Pn- i ?}1(2(s(j)\1(2 'Tl(sUl) eAlS(j)

If lpn+JI(t) I :< } I

'-": (s(j) - l)pn+J+1

(0 ~ t ~ 1),

\vhere

(3.8)

Let SNeX) be the sum of the first N terms of the (p, L) series (1.5). Then,
using (3.7), Lemmas 2.1, 2.2 and 3.1, we have

[f(x) - S"n(X) I = If Kn(x, t)j<"nJ(t) dt I~ Boo(n) -+ D (3.9)
o '
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as n ---+ 00. Furthermore, using (3.6) and inequalities (2.11) and (2.12) we have

ISpTl+,lx) - Spn(x) I = jj<pn)(1) Cpn(x) + i f<pn+j)(O) ApnH(x)]
J~O

so we have

If(x) - Spn+k(x)] --+ °as n --+ 00 (k = 0, 1,... , p - 1)

and this proves Theorem 3.1.

THEOREM 3.2. The (p, L) series converges absolutely to fez) provided

(I z 1--+ 00) (3.10)

where 7](1') .j, 0 and r 7](1') dr converges.

Proof From (2.34) we easily obtain the estimate

A similar procedure yields the estimate

(3.11)

(3.12)

where (3.11) and (3.12) are valid for all complex z with B a suitable constant
and Al and A2 are given by (1.4).

If we set t = 1 for j = 0, and t = 0 for j = 0, 1,..., p - 2 in (3.7), then
using (3.11) and (3.12), the (p, L) series off(z) (given by (1.5)) is dominated
by the series L::: ABoln) where A and B are suitable constants. Therefore
(1.5) converges absolutely provided L:=O 0l(n) converges forj = 0, 1,...,p - 2.
From (3.8) and since r 7](1') dr converges, Theorem 3.2 is proved.

THEOREM 3.3. The (p, L) series may fail to converge when

(I z 1---+ 00) (3.13)

Proof After Boas [1], consider the function fez) = eZ~l which satis
fies (3.13). However, from (2.41)

(y ;:?: 0). (3.14)
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Now f(;'nJ(l) = Arne'\ so the terms of the form ppn)(l) Cp,,(z) (n = 0, 1, ...)
of (1.5) do not approach zero when z = ,/(;)y (w = e2"i I P), hence (1.5)
cannot converge.

THEOREM 3.4. The (p, L) series may fail to converge absolutely when

( z I -+ 00)

where Al is given by (1.4).

Proof After Boas [1], we consider the function

Now

so from (2.13) we have for fixed xo(O < X o < 1)

(-I)n Cpn(xo) ~ >.~r>
1

(12 = 1,2,...).

Therefore, the (p, L) series of fez) cannot converge absolutely for
z = x(O < x < 1). However, by Theorem 3.1, the functionf(z) is represented
by its (p, L) series (1.5).
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