Representation of Functions by Generalized Lidstone Series

D. J. Leeming
Department of Mathematics, University of Victoria, Victoria, British Columbia, Carada
Communicated by E. W. Cheney
Received March 4, 1970

DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75 TH BIRTHDAY

1. Introduction

A Lidstone series provides a two-point expansion of a given function $f(z)$ in the form

$$
\begin{align*}
f(z)= & f(1) \Lambda_{0}(z)+f(0) \Lambda_{0}(1-z)+f^{\prime \prime}(1) \Lambda_{1}(z) \\
& +f^{\prime \prime}(0) \Lambda_{1}(1-z)+\cdots, \tag{1.1}
\end{align*}
$$

where $\Lambda_{n}(z)$ is a polynomial of degree $2 n+1$ defined by the generating function

$$
\begin{equation*}
\frac{\sinh z t}{\sinh t}=\sum_{n=0}^{\infty} t^{2 n} \Lambda_{n}(z) . \tag{1.2}
\end{equation*}
$$

Lidstone series have received much attention by H. Poritsky, I. J. Schoerberg, D. V. Widder, R. P. Boas, Jr. and others. For relevant literature on the subject, see Boas [1].

A function $f(x)$, having derivatives of all orders on an interval $[a, b]$, with the additional properties $(-1)^{n} f^{(2 n)}(x) \geqslant 0(a \leqslant x \leqslant b ; n=0,1, \ldots)$, is said to be completely convex on that interval. Widder $[5,6]$ studied the relationship between functions having a Lidstone series representation and the class of completely convex functions. He showed that a function $f(x)$ has an absolutely convergent Lidstone series representation if and only if it can be written as the difference of two minimal completely convexfunctions [6]. Boas [1] pointed out the difficulty in applying Widder's necessary and suffcient condition to an arbitrary function $f(x)$. He then gave simple necessary conditions and sufficient conditions for representation of functions by Lidstone series.

Recently, Leeming and Sharma [3] have introduced an extension of the

Lidstone series (called p-Lidstone or (p, L) series), and of completely convex functions (called completely W_{p}-convex functions), which led to a generalization of Widder's result [3, Theorem IV].

It is the object of this paper to give a generalization of the results of Boas [1] using the terminology and results given in [3].

In the remainder of Section 1 we give the notation and basic definitions used throughout the paper. In Section 2, we state and prove two theorems giving necessary conditions for representations of functions by (p, L) series. Section 3 contains four theorems which give sufficient conditions for representation of functions by (p, L) series.

Set

$$
\begin{align*}
& N_{p, j}(t)=\sum_{n=0}^{\infty} \frac{t^{p n+j}}{(p n+j)!} ; \quad M_{x, j}(t)=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{p n+j}}{(p n+j)!} \tag{1.3}\\
& (j=0,1, \ldots, p-1 ; p=2,3, \ldots)
\end{align*}
$$

We denote the positive zeros of $M_{p, p-1}(t)$ by

$$
\begin{equation*}
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\cdots \tag{1.4}
\end{equation*}
$$

Definition 1.1: The (formal) representation of a function $f \in C^{\infty}[0,1]$

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty}\left[f^{(p n)}(1) C_{p n}(z)+\sum_{j=0}^{\infty} f^{(p n+j)}(0) A_{p n+j}(z)\right] \tag{1.5}
\end{equation*}
$$

where $\left\{C_{p n}(z)\right\}_{n=0}^{\infty}$ and $\left\{A_{p n+j}(z)\right\}_{n=0}^{\infty}(j=0,1, \ldots, p-2)$ are defined by the generating functions

$$
\begin{align*}
\sum_{n=0}^{\infty} t^{p n} C_{p n}(z) & =\frac{N_{p, p-1}(z t)}{N_{p, p-1}(t)} \tag{1.6}\\
\sum_{n=0}^{\infty} t^{p n+j} A_{p n+j}(z) & =N_{p, j}(z t)-\frac{N_{p, j}(t) N_{p, p-1}(z t)}{N_{p, p-1}(t)} \tag{1.7}
\end{align*}
$$

($j==0,1, \ldots, p-2$) and $N_{P, j}(t)$ is given by (1.3) is called the p-Lidstone (or (p, L)) series of $f(z)$.

Definition 1.2. A real valued function f defined on $[a, b]$ is said to be completely W_{p}-convex if
(i) $f \in C^{\infty}[a, b]$
(ii) $\quad(-1)^{k} f^{(p k)}(x) \geqslant 0 \quad(a \leqslant x \leqslant b ; k=0,1, \ldots)$
(iii) $(-1)^{k} f^{(p k+j)}(a) \geqslant 0 \quad(j=1,2, \ldots, p-2 ; k=0,1, \ldots)$.

Remark. If we set $p=2$ in (1.5) we have the Lidstone series expansion (1.1). Further, setting $p=2$ in Definition 1.2 we have the class of completely convex functions.
2. Some Necessary Conditions for Representation of Functions gy (p, L) SERies

We shall show that results similar to those of Boas for the Lidstone series [1] bold for representation of a function by a (p, L) series. In particular we prove,

Theorem 2.1. If the (p, L) series of $f(z)$ converges absolutely to $f(z)$ then

$$
\begin{equation*}
f(z)=0\left(e^{|z| \lambda_{1}}\right) \quad(|z| \rightarrow \infty) \tag{2.j}
\end{equation*}
$$

where λ_{1} is given by (1.4).
Theorem 2.2. No condition of the form

$$
\begin{equation*}
f(z)=0\left\{\phi(|z|) e^{\left.|z| \lambda_{1}\right\}} \quad(|z| \rightarrow \infty)\right. \tag{2.2}
\end{equation*}
$$

where $\phi(r) \rightarrow 0$ as $r \rightarrow \infty$ and ϕ is independent of fis necessary for the absolute convergence of the (p, L) series to $f(z)$.

In order to prove Theorem 2.1 we require some preliminary results. Define

$$
(p-1)!K_{1}(x, t)= \begin{cases}(x-t)^{p-1}-(1-t)^{p-1} x^{p-1}, & (0 \leqslant t<x \leqslant 1) \tag{2.3}\\ -(1-t)^{p-1}, x^{p-1} & (0 \leqslant x \leqslant t \leqslant 1)\end{cases}
$$

$K_{1}(x, t)$ is the Green's function for the differential system

$$
\left\{\begin{array}{l}
y^{(p)}(x)=\phi(x) \tag{2.4}\\
y(1)=0 ; y(0)=y^{\prime}(0)=\cdots=y^{(p-2)}(0)=0
\end{array}\right.
$$

where $\phi(x)$ is any function continuous on $[0,1]$ so that

$$
\begin{equation*}
y(x)=\int_{0}^{1} K_{1}(x, t) \phi(t) d t . \tag{2.5}
\end{equation*}
$$

If we denote the iterates of $K_{1}(x, t)$ by

$$
\begin{equation*}
K_{n}(x, t)=\int_{0}^{1} K_{1}(x, u) K_{n-1}(u, t) d u \quad(n=2,3, \ldots) \tag{2.6}
\end{equation*}
$$

then we have
Lemma 2.1. If $f(x) \in C^{\infty}[0,1]$, then

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n-1} f^{(p k)}(1) C_{p k}(x)+\sum_{j=0}^{p-2} \sum_{k=0}^{n-1} f^{(p k+j)}(0) A_{p k+j}(x)+R_{n}(x, f) \tag{2.7}
\end{equation*}
$$

where

$$
\left\{C_{p k}(x)\right\}_{k=0}^{n-1} \quad \text { and } \quad\left\{A_{p k+j}(x)\right\}_{k=0}^{n-1} \quad(j=0,1, \ldots, p-2)
$$

are defined by (1.6) and (1.7) and

$$
\begin{equation*}
R_{n}(x, f)=\int_{0}^{1} K_{n}(x, t) f^{(p n)}(t) d t \tag{2.8}
\end{equation*}
$$

with $K_{n}(x, t)$ given by (2.3) and (2.6).
Lemma 2.2. If $f(x)$ is completely W_{p}-convex on $[0,1]$ then for any $x_{0}\left(0 \leqslant x_{0} \leqslant 1\right)$,

$$
\begin{array}{ll}
f(x) \geqslant f\left(x_{0}\right) x^{p-1} & \left(0 \leqslant x \leqslant x_{0}\right) \\
f(x) \leqslant f\left(x_{0}\right)\left(1-x^{p-1}\right) & \left(x_{0} \leqslant x \leqslant 1\right) \tag{2.10}
\end{array}
$$

Note. Throughout the paper we use B to denote suitable constants (not necessarily the same) which are independent of n and x unless otherwise stated.

Lemma 2.3. (a) For $0 \leqslant x \leqslant 1, n=1,2, \ldots$,

$$
\begin{align*}
& 0 \leqslant(-1)^{n} C_{p n}(x) \leqslant \frac{B}{\lambda_{1}^{p n}}, \tag{2.11}\\
& 0 \leqslant(-1)^{n} A_{p n+j}(x) \leqslant \frac{B}{\lambda_{1}^{p^{n}}} \quad(n=0,1, \ldots, p-2) \tag{2.12}
\end{align*}
$$

(b) For any fixed $x_{0}\left(0<x_{0}<1\right)$ there is a constant B such that

$$
\begin{align*}
(-1)^{n} C_{p n}\left(x_{0}\right) & \geqslant \frac{B}{\lambda_{1}^{p n}} \quad(n=1,2, \ldots), \tag{2.13}\\
(-1)^{n} A_{p n+j}\left(x_{0}\right) & \geqslant \frac{B}{\lambda_{1}^{p n}} \quad(j=0,1, \ldots, p-2 ; n=1,2, \ldots) . \tag{2.14}
\end{align*}
$$

The proofs of Lemmas 2.1-2.3 are given in [3].

Lemma 2.4. If $f(x)$ is completely W_{p}-convex on $[0,1]$ and

$$
M_{n}=\max _{0 \leqslant x \leqslant 1}\left|f^{(n)}(x)\right|
$$

then

$$
\begin{equation*}
(-1)^{n} f^{(p n)}(x) \geqslant M_{p n}\left(x^{p-1}-x^{p}\right), \quad(0 \leqslant x \leqslant 1, \quad n=0,1, \ldots) . \tag{2.15}
\end{equation*}
$$

Proof. Suppose the maximum $M_{p n}$ is attained at $x=x_{0}$. Then, by Lemma 2.1, we have for $0 \leqslant x \leqslant x_{0}$

$$
\begin{align*}
(-1)^{n} f^{(p n)}(x)= & (-1)^{n} \sum_{j=0}^{p-2} f^{(p n+j)}(0)\left[\left(\frac{x}{x_{0}}\right)^{j}-\left(\frac{x}{x_{0}}\right)^{p-1}\right] \\
& +(-1)^{n} f^{(p n)}\left(x_{0}\right)\left(\frac{x}{x_{0}}\right)^{p-1}+R_{n}\left(x, x_{0}, f\right) \tag{2.16}
\end{align*}
$$

where

$$
R_{n}\left(x, x_{0}, f\right)=\int_{0}^{x_{0}}(-1)^{n} K_{1}\left(\frac{x}{x_{0}}, t\right) f^{(p n+p)}(t) d t \geqslant 0
$$

with $K_{1}(x, t)$ given by (2.3). Therefore, from Lemma 2.2

$$
\begin{equation*}
(-1)^{\prime \prime} f^{(p n)}(x) \geqslant M_{p n}\left(\frac{x}{x_{0}}\right)^{p-1} \geqslant M_{p n} x^{p-1} \geqslant M_{p n}\left(x^{p-1}-x^{p}\right) \tag{2.17}
\end{equation*}
$$

For the interval $x_{0} \leqslant x \leqslant 1$, we expand $f(x)$ using $f(1), f\left(x_{0}\right)$ and $f^{(i)}(0)$ $(j=1,2, \ldots, p-2)$ to obtain

$$
\begin{equation*}
f(x)=f\left(x_{0}\right) D_{0}(x)+f(1) D_{1}(x)+\sum_{j=1}^{p-2} f^{(j)}(0) E_{j}(x)+R^{*}\left(x, x_{0}, f\right) \tag{2,18}
\end{equation*}
$$

with

$$
\begin{align*}
D_{0}(x) & =\frac{1-x^{p-1}}{1-x_{0}^{p-1}} ; \quad D_{1}(x)=\left(\frac{1-x_{0}^{j}}{1-x_{0}^{p-1}}\right)\left(1-x^{p-1}\right) \tag{2.19}\\
j!E_{j}(x) & =x^{j}-1+\left(\frac{1-x_{0}^{j}}{1-x_{0}^{p-1}}\right)\left(1-x^{p-1}\right)
\end{align*}
$$

and, for $x_{0} \leqslant x \leqslant 1, D_{0}(x) \geqslant 0, D_{1}(x) \geqslant 0, E_{j}(x) \geqslant 0(j=1,2, \ldots, p-2)$. Furthermore [3, Lemma 7.3], $R^{*}\left(x, x_{0}, f\right) \geqslant 0, x_{0} \leqslant x \leqslant 1$; so we have

$$
\begin{equation*}
(-1)^{n} f^{(p n)}(x) \geqslant M_{p n}\left(\frac{1-x^{p-1}}{1-x_{0}^{p-1}}\right) \geqslant M_{p n}\left(1-x^{p-1}\right) \geqslant M_{p n}\left(x^{p-1}-x^{p}\right) \tag{2.20}
\end{equation*}
$$

This proves the Lemma.

Lemma 2.5. Let $K_{n}(x, t)$ be defined by (2.3) and (2.6). If

$$
\begin{equation*}
g_{n}(x)=\int_{0}^{1} K_{n}(x, t)\left(t^{p-1}-t^{p}\right) d t \quad(n=1,2, \ldots) \tag{2.21}
\end{equation*}
$$

then there exists a positive constant B such that

$$
\begin{equation*}
(-1)^{n} g_{n}\left(x_{0}\right) \geqslant \frac{B}{\lambda_{1}^{p n+p}} \tag{2.22}
\end{equation*}
$$

Proof. From (2.4)-(2.6), it follows easily that $g_{n}(x)$ has the properties

$$
\begin{align*}
g_{n}^{(p n)}(x) & =x^{p-1}-x^{p} \tag{2.23}\\
g_{n}^{(p k)}(1) & =0 ; g_{n}^{(p k+j)}(0)=0 \quad(j=0,1, \ldots, p-2 ; k=0,1, \ldots, n-1)
\end{align*}
$$

Therefore,

$$
\begin{equation*}
g_{n}(x)=\frac{(p-1)!x^{p n+p-1}}{(p n+p-1)!}-\frac{p!x^{p n+p}}{(p n+p)!}+Q_{p n-1}(x) \tag{2.24}
\end{equation*}
$$

where $Q_{p n-1}(x)$ is a polynomial of degree $p n-1$. Thus by Lemma 2.1

$$
\begin{equation*}
g_{n}(x)=\sum_{k=0}^{n+1}\left[g_{n}^{(p k)}(1) C_{p k}(x)+\sum_{j=0}^{p-2} g_{n}^{(p k+j)}(0) A_{p k+j}(0)\right] \tag{2.25}
\end{equation*}
$$

By (2.23) and the properties of $C_{p k}(x), A_{p k+j}(x)(j=0,1, \ldots, p-2$; $k=0,1, \ldots),(2.25)$ yields

$$
\begin{equation*}
g_{n}(x)=\sum_{k=n}^{n+1}\left[g_{n}^{(p k)}(1) C_{p k}(x)+\sum_{j=0}^{p-2} g_{n}^{(p k+j)}(0) A_{p k+j}(x)\right] \tag{2.26}
\end{equation*}
$$

Using (2.24) and (2.25), (2.26) reduces to

$$
\begin{equation*}
g_{n}(x)=-p!\left(A_{p n+p}(x)+C_{p n+p}(x)\right] \tag{2.27}
\end{equation*}
$$

Therefore $(-1)^{n} g_{n}(x)=(-1)^{n+1} p!\left[A_{y n+p}(x)+C_{p n+p}(x)\right]$.
From (2.13) and (2.14) we have (2.22) which proves the lemma.
Proof of Theorem 2.1. From Lemma 2.1,

$$
\begin{align*}
f(x) & -\sum_{k=0}^{n-1} f^{(p k)}(1) C_{p k}(x)+\sum_{j=0}^{p-2} f^{(p k+j)}(0) A_{p k+j}(x) \\
& =\int_{0}^{1} K_{n}(x, t) f^{(p n)}(t) d t \tag{2.28}
\end{align*}
$$

where $K_{n}(x, t)$ is defined by (2.3) and (2.6). Since (-1$)^{n} K_{n}(x, t) \geqslant 0$ $(0 \leqslant x \leqslant 1 ; 0 \leqslant t \leqslant 1, n=1,2, \ldots)$ [3, Lemma 4.2] and by Lemma 2.4

$$
\begin{aligned}
& \int_{0}^{1} K_{n}(x, t) f^{(p n)}(t) d t \\
& \quad=\int_{0}^{1}(-1)^{n} K_{n}(x, t)(-1)^{n} f^{(p n)}(t) d t \\
& \quad \geqslant M_{p n} \int_{0}^{1}(-1)^{n} K_{n}(x, t)\left(t^{p-1}-t^{p}\right) d t=M_{p n}(-1)^{n} g_{n}(x)
\end{aligned}
$$

Setting $x=x_{0}\left(0<x_{0}<1\right)$ and applying Lemma 2.3 we have

$$
\begin{equation*}
\int_{0}^{1} K_{n}\left(x_{0}, t\right) f^{(p n)}(t) d t \geqslant \frac{B M_{p n}}{\lambda_{1}^{p n+p}}>0 \tag{2.29}
\end{equation*}
$$

From (2.7) we see that if the (p, L) series of $f(x)$ converges to $f(x)$ for $x=x_{0}\left(0<x_{0}<1\right)$, the left side of (2.29) approaches zero, hence $M_{p n} \leqslant \epsilon_{n} \lambda_{1}^{p n}$ where $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. It follows easily from a result of Hadamard (see, e.g., [2, p. 13]) that $M_{p n+j} \leqslant \epsilon_{n} \lambda_{1}^{p_{n+j}}(j=0,1, \ldots, p-1)$. Therefore $f^{(k)}(x)=0\left(\lambda_{1}{ }^{k}\right)$ as $k \rightarrow \infty$, so if z is any complex number, we have

$$
|f(z)|=\sum_{n=0}^{\infty} \frac{f^{(n)}(0) z^{n}}{n!} \leqslant \sum_{n=0}^{\infty} \frac{M_{n}|z|^{n}}{n!}=0\left(e^{|z| \lambda_{1}}\right) \text { as }|z| \rightarrow \infty .
$$

This proves the theorem.
Theorem 2.2. No condition of the form

$$
\begin{equation*}
f(z)=0\left\{\phi(|z|) e^{\left.|z| \lambda_{1}\right\}} \quad(|z| \rightarrow \infty)\right. \tag{2.30}
\end{equation*}
$$

where $\phi(r) \rightarrow 0$ as $r \rightarrow \infty$ and ϕ is independent of fis necessary for the absolute convergence of the (p, L) series to $f(z)$.

Proof. Choose a sequence of positive numbers $\left\{c_{p n}\right\}_{n=0}^{\infty}$ such that the series $\sum_{n=0}^{\infty} c_{p n} / \lambda_{1}^{p n}$ converges, where λ_{1} is given by (1.4).

Define

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty}(-1)^{n} c_{p n} C_{p x}(z) \tag{2.31}
\end{equation*}
$$

If we set

$$
\begin{equation*}
C_{p n, 1}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{N_{p, p-1}(z t)}{t^{p n+1} N_{p, p-1}(t)} d t \tag{2.32}
\end{equation*}
$$

where $N_{p, p-1}(t)$ is given by (1.3) and Γ is the circle $|t|=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)$. From Cauchy's Residue Theorem it is easily shown that

$$
\begin{equation*}
C_{p n, 1}(z)-C_{p n}(z)=\frac{(-1)^{n} p M_{p, p-1}\left(z \lambda_{1}\right)}{\lambda_{1}^{p n+1} M_{p, p-2}} . \tag{2.33}
\end{equation*}
$$

Since $M_{p, p-1}(z \tau)$ is an entire function of exponential type $|\tau|$, and since $N_{p, p-1}(t)$ is uniformly bounded away from zero for $|t|=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)$, we obtain the estimate

$$
\begin{equation*}
C_{p n}(z) \left\lvert\, \leqslant\left(\frac{2}{\lambda_{1}+\lambda_{2}}\right) A \exp \left[\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right)|z|\right] .\right. \tag{2.34}
\end{equation*}
$$

Therefore the series (2.31) is absolutely convergent for every z. Set $z=x+i y$ and $\omega=e^{2 \pi i / p}$. In order to complete the proof of Theorem 2.2, we require a lower bound on $|f(\sqrt{\omega y})|$, and so we prove

Lemma 2.6. For $n=0,1, \ldots$ and $y \geqslant 0$,

$$
\begin{equation*}
-\sqrt{\omega}(-1)^{n} C_{p n}(\sqrt{\omega} y) \geqslant p A_{p} \sum_{j=0}^{n-1} \frac{y^{g k+p-1}\left(\lambda_{1}\right)^{p(n-j-1)+2}}{(p k+p-1)!}, \tag{2.35}
\end{equation*}
$$

where A_{p} is a positive constant depending only on p.
Proof of Lemma 2.6. Since we have [3, p. 15]

$$
\begin{equation*}
C_{p n}(x)=p(-1)^{n+1} \sum_{k=1}^{\infty} \frac{M_{p, p-1}\left(x \lambda_{k}\right)}{M_{p, p-2}\left(\lambda_{k}\right) \lambda_{k}^{p n+1}}, \tag{2.36}
\end{equation*}
$$

where $\lambda_{k}(k=1,2, \ldots)$ is given by (1.4). This representation of $C_{p n}(x)$ is valid in [0, 1].

Case I: $\quad p=2$. Then (2.36) reduces to the Fourier Series expansion of $C_{2 n}(x)$ and we have $A_{2}=\frac{3}{4}$, whereas Boas [1, p. 242] obtains the better estimate $\frac{3}{2}$ by summing a geometric series.

Case II: $p>2$. Boas' technique does not work, since the function $M_{p, p-1}(t)$ is not periodic for $p>2$. However, using the properties of the function $M_{p, p-1}(t)$ [4, p. 46] we have

$$
\begin{align*}
& C_{p n}^{(p j+p)}(0)=0 \quad(v=0,1, \ldots, p-2) \tag{2.37}\\
C_{p n}^{(p j+p-1)}(0) & =p(-1)^{n+j+1} \sum_{k=1}^{\infty} \frac{1}{\left.M_{p, p-2}\left(\lambda_{k}\right) \lambda_{k_{k}}\right)^{p(n-j-1)+2}} \\
& =\frac{p(-1)^{n+j}}{\left(\lambda_{1}\right)^{p(n-j-1)+2}} \sum_{k=1}^{\infty}\left(-\frac{1}{M_{p, p-2}\left(\lambda_{k}\right)}\right)\left(\frac{\lambda_{1}}{\lambda_{k}}\right)^{p(n-j-1)+2} \\
& =\frac{p(-1)^{n+j} A_{p, j}}{\left(\lambda_{1}\right)^{p(n-j-1)+2}} \tag{2.38}
\end{align*}
$$

Now for $p>2,\left\{(-1)^{k} M_{p, p-2}\left(\lambda_{k}\right)\right\}_{k=1}^{\infty}$ is an increasing sequence of positive numbers unbounded above [4], so for $j=0,1, \ldots, n-1$, we have

$$
\begin{aligned}
A_{p, j} & \geqslant-\frac{1}{M_{p, p-2}\left(\lambda_{1}\right)}+\frac{1}{M_{p, p-2}\left(\lambda_{2}\right)}\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{p t n-j-1)+2} \\
& >-\frac{1}{M_{p, p-2}\left(\lambda_{1}\right)}\left[1-\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{2}\right]=A_{p}>0 .
\end{aligned}
$$

From (2.38) and (2.39) we have

$$
\begin{equation*}
(-1)^{n+j} C_{p n}^{(p j+p-1)}(0)>\frac{p A_{p}}{\left(\lambda_{1}\right)^{p(n-j+1)+2}}(j=0,1, \ldots, n-1) \tag{2.40}
\end{equation*}
$$

Since $C_{p n}^{(p+j p-1)}(x)=C_{0}^{(p-1)}(x)=(p-1)$!, we use the Maclaurin series to express $C_{p n}(\sqrt{\omega y})$ in the form

$$
\begin{aligned}
(-1)^{n} D_{p n}(\omega y) & =(-1)^{n} \sum_{j=0}^{p+p-1} \frac{(\sqrt{\omega} y)^{j}}{j!} C_{p n}^{(j)}(0) \\
& =(-1)^{n} \sum_{k=0}^{n} \frac{(\sqrt{\omega} y)^{p \hbar+p-1}}{(p k+p-1)!} C_{p n}^{(p k+p-1)}(0) \\
& =-\frac{1}{\sqrt{\omega}} \sum_{k=0}^{n} \frac{(-1)^{k+n} y^{p l+p-1}}{(p k+p-1)!} C_{p n}^{(p k+p-1)}(0)
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
-\sqrt{\omega}(-1)^{n} C_{p n}(\sqrt{\omega} y) \geqslant p A_{p} \sum_{k=0}^{n-1} \frac{y^{p k+p-1}}{(p k+p-1)!}\left(\lambda_{1}\right)^{p(n-\bar{i}-1)+2} \tag{2.41}
\end{equation*}
$$

This completes the proof of Lemma 2.6.
Substituting (2.41) in (2.31), we have, for $y \geqslant 0$,

$$
\begin{aligned}
-\sqrt{\omega} f(\sqrt{\omega} y) & =-\sqrt{\omega} \sum_{n=0}^{\infty}(-1)^{n} c_{p n} C_{p n}(\sqrt{\omega} y) \\
& \geqslant \frac{p A_{p}}{\lambda_{1}} \sum_{n=1}^{\infty} c_{p n}\left(\lambda_{1}\right)^{-p n} \sum_{k=0}^{n-1} \frac{\left(y \lambda_{1}\right)^{p k+p-1}}{(p k+p-1)!} \\
& =\frac{p A_{p}}{\lambda_{1}} \sum_{k=1}^{\infty} \frac{q_{k}\left(y \lambda_{1}\right)^{p \grave{k}+p-1}}{(p k+p-1)!}
\end{aligned}
$$

where

$$
q_{k}=\sum_{n=k+1}^{\infty} c_{p n}\left(\lambda_{1}\right)^{-p n} \text { and } q_{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

Given any number $c>0$, when $c y=p-1(\bmod p)$ we have, using Stirling's formula

$$
\begin{aligned}
& \frac{-\sqrt{\omega} \lambda_{1}}{p A_{p}} f(\sqrt{\omega} y) \\
& \quad \geqslant q_{c y} \sum_{k=0}^{c y} \frac{\left(y \lambda_{1}\right)^{p k+p-1}}{(p k+p-1)!} \\
& \quad=q_{c y}\left\{N_{p, p-1}\left(y \lambda_{1}\right)-\sum_{n=c y+1}^{\infty} \frac{\left(y \lambda_{1}\right)^{p k+p-1}}{(p k+p-1)!}\right\} \\
& \quad=q_{c y}\left\{N_{p, p-1}\left(y \lambda_{1}\right)-\frac{\left(y \lambda_{1}\right)^{c y+1}}{(c y+1)!} N_{p, p-1}\left(y \theta \lambda_{1}\right)\right\}, \quad(0<\theta<1) \\
& \quad \geqslant q_{c y}\left\{N_{p, p-1}\left(y \lambda_{1}\right)\left[1-\left(\frac{e \lambda_{1}}{c}\right)^{c y+1}\right]\right\}
\end{aligned}
$$

Now if c is chosen so large that $\lambda_{1} / c<1 / e$, then we have

$$
\frac{-\sqrt{\omega} \lambda_{1}}{p A_{p}} f(\sqrt{\omega} y) \geqslant[1-o(1)] q_{c y} N_{p, p-1}\left(y \lambda_{1}\right)
$$

Therefore, for any given function $\phi(r)$ such that $\phi(r) \rightarrow 0$ as $r \rightarrow \infty$, we may choose the sequence $\left\{c_{p n}\right\}_{n=0}^{\infty}$ so that $q_{c y}$ will approach zero as slowly as desired, so there is a function $f(z)$ defined by the (p, L) series (2.31) not satisfying (2.30). This completes the proof of Theorem 2.2.

3. Some Sufficient Conditions for Representation of Functions by (p, L) SERIES

The results of this section generalize the results given by Boas [1] for the Lidstone series. Here we obtain similar results for (p, L) series.

Theorem 3.1. The (p, L) series of $f(z)$ converges to $f(z)$ if

$$
\begin{equation*}
f(z)=0\left(|z|^{-1 / 2} e^{|z| \lambda_{1}}\right) \quad(|z| \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

where λ_{1} is given by (1.4).

Before proving Theorem 3.1, we require
Lemma 3.1. Let $K_{n}(x, t)(n=1,2, \ldots$,$) be defined by (2.2) and (2.5).$
Then for $0 \leqslant x \leqslant 1$

$$
\begin{equation*}
0 \leqslant(-1)^{n} \int_{0}^{1} K_{n}(x, t) d t \leqslant \frac{B}{\lambda_{1}^{p n}} \tag{3.2}
\end{equation*}
$$

The proof of Lemma 3.1 is given [3, Lemma 6.4, p. 18].
Proof of Theorem 3.1. If $f(z)$ satisfies (3.1) then

$$
\begin{equation*}
|f(z)| \leqslant \eta(|z|)|z|^{-1 / 2} e^{|z| \lambda_{1}} \tag{3.3}
\end{equation*}
$$

where $\eta(s) \rightarrow 0$ as $s \rightarrow \infty$. Furthermore, for $0 \leqslant t \leqslant 1$ we have

$$
\begin{equation*}
f^{(p n+j)}(t)=\frac{(p n+j)!}{2 \pi i} \int_{C_{j}} \frac{f(z) d z}{(z-t)^{p n+j+1}} \quad(j=0,1, \ldots, p-2), \tag{3.4}
\end{equation*}
$$

where C_{j} is the circle $|z|=s^{(j)}>1$, and

$$
\begin{equation*}
s^{(i)}=1+\frac{p n+j}{\lambda_{1}} . \tag{3.5}
\end{equation*}
$$

From (3.3) and (3.4) we have

$$
\begin{align*}
\left|f^{(p n+j)}(t)\right| & \leqslant \frac{(p n+j)!s^{(j)}}{\left(s^{(j)}-1\right)^{p n+j+1}}\left(\max _{|z| \leqslant s^{(j)}}|f(z)|\right) \\
& \leqslant \frac{(p n+j)!\eta\left(s^{(j)}\right) e^{\lambda_{1} s^{(j)}}}{\left(s^{(j)}-1\right)^{p n+j+1}\left(s^{(j)}\right)^{1 / 2}} . \tag{3.6}
\end{align*}
$$

From (3.5) and Stirling's formula, we have

$$
\begin{aligned}
\left|f^{(p n+j)}(t)\right| & \leqslant \frac{B(p n+j)^{p n+j} e^{-p n-i} \eta^{1 / 2}\left(s^{(j)}\right)^{1 / 2} \eta\left(s^{(j)}\right) e^{\lambda_{1} s^{(j)}}}{\left(s^{(j)}-1\right)^{p+3+1}} \\
& \leqslant B\left(\lambda_{1}\right)^{p n} \delta_{j}(n) \quad(0 \leqslant t \leqslant 1),
\end{aligned}
$$

where

$$
\begin{equation*}
\delta_{j}(n)=\frac{\lambda_{1}}{p} \eta\left(s^{(i)}\right) . \tag{3.8}
\end{equation*}
$$

Let $S_{N}(x)$ be the sum of the first N terms of the (p, L) series (1.5). Then, using (3.7), Lemmas 2.1, 2.2 and 3.1, we have

$$
\begin{equation*}
\left|f(x)-S_{p n}(x)\right|=\left|\int_{0}^{1} K_{n}(x, t) f^{(p n)(t)} d t\right| \leqslant B \delta_{0}(n) \rightarrow 0 \tag{3,9}
\end{equation*}
$$

as $n \rightarrow \infty$. Furthermore, using (3.6) and inequalities (2.11) and (2.12) we have

$$
\begin{aligned}
\left|S_{p n+k}(x)-S_{p n}(x)\right| & =\left|f^{(p n)}(1) C_{p n}(x)+\sum_{j=0}^{k} f^{(p n+j)}(0) A_{p n+j}(x)\right| \\
& \leqslant B\left(\lambda_{1}\right)^{p n} \delta_{0}(n)\left\{\left|C_{p n}(x)\right|+\sum_{j=0}^{k}\left|A_{p n+j}(x)\right|\right\} \leqslant B \delta_{0}(n)
\end{aligned}
$$

so we have

$$
\left|f(x)-S_{p x+k}(x)\right| \rightarrow 0 \text { as } n \rightarrow \infty(k=0,1, \ldots, p-1)
$$

and this proves Theorem 3.1.
Theorem 3.2. The (p, L) series converges absolutely to $f(z)$ provided

$$
\begin{equation*}
f(z)=0\left\{\eta(|z|)|z|^{-1 / 2} e^{|z| \lambda_{1}}\right\} \quad(|z| \rightarrow \infty) \tag{3.10}
\end{equation*}
$$

where $\eta(r) \downarrow 0$ and $\int^{\infty} \eta(r) d r$ converges.
Proof. From (2.34) we easily obtain the estimate

$$
\begin{equation*}
\left|C_{p n}(z)\right| \leqslant \frac{B e^{|z| \lambda_{2}}}{\left(\lambda_{1}\right)^{p n}} \tag{3.11}
\end{equation*}
$$

A similar procedure yields the estimate

$$
\begin{equation*}
\left|A_{p_{n+j}}(z)\right| \leqslant \frac{B e^{|z| \lambda_{2}}}{\left(\lambda_{1}\right)^{p_{n}}} \tag{3.12}
\end{equation*}
$$

where (3.11) and (3.12) are valid for all complex z with B a suitable constant and λ_{1} and λ_{2} are given by (1.4).

If we set $t=1$ for $j=0$, and $t=0$ for $j=0,1, \ldots, p-2$ in (3.7), then using (3.11) and (3.12), the (p, L) series of $f(z)$ (given by (1.5)) is dominated by the series $\sum_{j=0}^{p-2} A B \delta_{j}(n)$ where A and B are suitable constants. Therefore (1.5) converges absolutely provided $\sum_{n=0}^{\infty} \delta_{j}(n)$ converges for $j=0,1, \ldots, p-2$. From (3.8) and since $\int^{\infty} \eta(r) d r$ converges, Theorem 3.2 is proved.

Theorem 3.3. The (p, L) series may fail to converge when

$$
\begin{equation*}
f(z)=0\left(e^{|z| \lambda_{1}}\right) \quad(|z| \rightarrow \infty) \tag{3.13}
\end{equation*}
$$

Proof. After Boas [1], consider the function $f(z)=e^{z \lambda_{1}}$ which satisfies (3.13). However, from (2.41)

$$
\begin{equation*}
-\sqrt{\omega}(-1)^{n} C_{p n}(\sqrt{\omega} y) \geqslant \frac{p A_{p} y^{p-1}}{\left(\lambda_{1}\right)^{p_{n+p}-2}} \quad(y \geqslant 0) \tag{3.14}
\end{equation*}
$$

Now $f^{\left({ }^{(n n)}\right)}(1)=\lambda_{1}^{p n} e^{\lambda_{1}}$, so the terms of the form $f^{(p n)}(1) C_{p n}(z)(n=0,1, \ldots)$ of (1.5) do not approach zero when $z=\sqrt{\omega y}\left(\omega=e^{2 \pi i / p}\right)$, hence (1.5) cannot converge.

Theorem 3.4. The (p, L) series may fail to converge cbsolutely when

$$
\begin{equation*}
f(z)=0\left(|z|^{-1} e^{|z| \lambda_{1}}\right) \quad(z \mid \rightarrow \infty) \tag{3.15}
\end{equation*}
$$

where λ_{1} is given by (1.4).
Proof. After Boas [1], we consider the function

$$
f(z)=\frac{e^{\lambda_{1}(z-1)}-1}{\lambda_{1}(z-1)}=1+\sum_{n=2}^{\infty} \frac{\left[\lambda_{1}(z-1)\right]^{n-1}}{n!}
$$

Now

$$
f^{(p n)}(1)=\frac{\lambda_{1}^{p n}}{p n+1}
$$

so from (2.13) we have for fixed $x_{0}\left(0<x_{0}<1\right)$

$$
(-1)^{n} C_{p n}\left(x_{0}\right) \geqslant \frac{B}{\lambda_{1}^{p n}} \quad(n=1,2, \ldots)
$$

Therefore, the (p, L) series of $f(z)$ cannot converge absolutely for $z=x(0<x<1)$. However, by Theorem 3.1, the function $f(z)$ is represented by its (p, L) series (1.5).

Acknowledgment

I wish to express my thanks to Professor A. Sharma, University of Alberta, Edmonton, Canada, for several useful discussions and suggestions during the preparation of this paper.

References

1. R. P. Boas, Jr., Representation of functions by Lidstone series, Duke Math, I. 10 (1943), 239-245.
2. H. Cartan, Sur les classes de fonctions définés par les inégalités ..., Hermann, Paris, 1940.
3. D. J. Leeming and A. Sharma, A generalization of completely convex functions, Third Symposium on Inequalities, University of California, Los Angeles, CA, 1969, to appear.
4. Jan G. Mikusinski, Sur les fonctions

$$
k_{n}(x)=\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} x^{n+k v}}{(n+k v)!}(k=1,2, \ldots, ; n=0,1, \ldots, k-1) .
$$

Ann. Soc. Polon. Math. 21 (1948), 46-51.
5. D. V. Widder, Functions whose even derivatives have a prescribed sign, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 657-659.
6. D. V. Widder, Completely convex functions and Lidstone series, Trans. Amer. Math. Soc. 51 (1942), 387-398.

